This video shows the method to use differential equations to represent growth. Consider the function y=multiple of C & e raised to kx or Ce^(kx). Differentiating it with respect to x, we get dy/dx=kCe^(kx) or ky. So, the solution of the differential equation dy/dx=ky is Ce^(kx). There are two possibilities in the function y=e^(kx). It can be exponentially growth or decay function. This depends on the value of k. If k is greater than 0 or k>0, we get an exponential growth function. On the other hand if k<0, we get an exponential decay function. The graph of y= Ce^(kx) goes upwards towards the positive y axis if C is positive and vice versa. k is called as the continuous growth rate.

**It’s Black Friday week on WonderHowTo!** Don’t miss out on all of the big sales in the Gadget Hacks and Null Byte shops. And if you’ve been wanting to take some classes without going into debt, check out our best deals on online courses for a variety of skill sets. Don’t miss out on these huge discounts:

**See Gadget Hacks’s top 10 BF sales on online courses (up to 99% off) >**

**See Null Byte’s top 13 BF sales on online courses (up to 99% off) >**

## Be the First to Comment

## Share Your Thoughts