This video shows the method to use differential equations to represent growth. Consider the function y=multiple of C & e raised to kx or Ce^(kx). Differentiating it with respect to x, we get dy/dx=kCe^(kx) or ky. So, the solution of the differential equation dy/dx=ky is Ce^(kx). There are two possibilities in the function y=e^(kx). It can be exponentially growth or decay function. This depends on the value of k. If k is greater than 0 or k>0, we get an exponential growth function. On the other hand if k<0, we get an exponential decay function. The graph of y= Ce^(kx) goes upwards towards the positive y axis if C is positive and vice versa. k is called as the continuous growth rate.

**Want to master Microsoft Excel and take your work-from-home job prospects to the next level?** Jump-start your career with our Premium A-to-Z Microsoft Excel Training Bundle from the new Gadget Hacks Shop and get lifetime access to more than 40 hours of Basic to Advanced instruction on functions, formula, tools, and more.

## Be the First to Comment

## Share Your Thoughts