This video shows the method to use differential equations to represent growth. Consider the function y=multiple of C & e raised to kx or Ce^(kx). Differentiating it with respect to x, we get dy/dx=kCe^(kx) or ky. So, the solution of the differential equation dy/dx=ky is Ce^(kx). There are two possibilities in the function y=e^(kx). It can be exponentially growth or decay function. This depends on the value of k. If k is greater than 0 or k>0, we get an exponential growth function. On the other hand if k<0, we get an exponential decay function. The graph of y= Ce^(kx) goes upwards towards the positive y axis if C is positive and vice versa. k is called as the continuous growth rate.
You already know how to use your phone. With Gadget Hacks' newsletter, we'll show you how to master it. Each week, we explore features, hidden tools, and advanced settings that give you more control over iOS and Android than most users even know exists.
Sign up for Gadget Hacks Weekly and start unlocking your phone's full potential.
Comments
Be the first, drop a comment!