How To: Interpret derivatives of marginal cost and revenue

Interpret derivatives of marginal cost and revenue

This video tells us the method of interpreting derivatives of marginal cost and revenue. If C(x) is the cost of producing x units of a product, C(400) would be the cost to produce 400 units. Now marginal cost is the cost of producing one unit which is equal to the derivative of the cost function or C'(400) which is equal to limit of h tends to zero or lim h->0 [lim(400+h)-lim(400)]/h which is approximately equal to [lim(401)-lim(400)]/1. Similarly, if R(x) is your revenue function, marginal revenue R'(400) = lim h->0[R(400+h)-R(400)]/h which is approximately equal to [lim(401)-lim(400)]/1. This finishes the video.

Want to master Microsoft Excel and take your work-from-home job prospects to the next level? Jump-start your career with our Premium A-to-Z Microsoft Excel Training Bundle from the new Gadget Hacks Shop and get lifetime access to more than 40 hours of Basic to Advanced instruction on functions, formula, tools, and more.

Buy Now (97% off) >

Our Best Phone Hacks

Gadget Hacks' tips — delivered daily.

Be the First to Comment

Share Your Thoughts

  • Hot
  • Latest