This video shows the method to simplify rational expressions. The example used in the video is multiple of 4 and x square plus multiple of 4 and x plus 1 or (4x^2 + 4x + 1)/(2x^3 + 11x^2 + 5x). As the first and last term is a perfect square we get the simplified numerator as (2x + 1)(2x + 1). Next, the denominator is simplified. Taking the common factor out we get x(2x^2 + 11x + 5). Now we factorize 2x^2 + 11x + 5. We get (2x + 1)(x + 5 ). Now, writing the terms in numerator and denominator we get [(2x + 1)(2x + 1)]/[x(2x + 1)(x + 5)]. Cancelling the common factor we get (2x + 1)/[x(x + 5)] as the final answer.
Home
Math How to Factor out when doing rational expressions in algebra

By getexcellent
Apr 17, 2010 04:42 PM
You already know how to use your phone. With Gadget Hacks' newsletter, we'll show you how to master it. Each week, we explore features, hidden tools, and advanced settings that give you more control over iOS and Android than most users even know exists.
Sign up for Gadget Hacks Weekly and start unlocking your phone's full potential.
Comments
Be the first, drop a comment!