The relationship and the definition of derivatives and anti-derivatives is described in this video. First, consider a function F(x)=x^3-5x+2 and another with small 'f', f(x)=3x-5. f(x) here is the derivative of F(x). However, on the contrary, F(x) is said to be the anti-derivative of f(x). There is a catch though; even though F(x) has only one derivative in the form of f(x), f(x) here has more than one anti-derivative. This is because f(x)'s anti-derivatives are of the form F(x)=x^3-5x+c, where c stands for any constant number. For example, f(x) anti-derivatives can be any of the following: F(x)=x^3-5x+2, F(x)=x^3-5x, F(x)=x^3-5x+4... and so on.
![Math instructor explaining the relationship between functions on a whiteboard.](https://assets.content.technologyadvice.com/634753898740874607_e1390d5447.webp)
Just updated your iPhone? You'll find updated Apple Intelligence capabilities, new wallpapers, and enhancements to Calculator, PDF cropping, and Live Voicemail, among other useful features. Find out what's new and changed on your iPhone with the iOS 18.3 update.
Comments
Be the first, drop a comment!